Corn Journal
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact
"You can see a lot by just looking"-Yogi Berra

C4 photosynthesis

6/24/2021

 
​Photosynthesis in all plant species involves multiple steps with many enzymes that can be divided into two main steps occurring in the membranes making up most of the content of chloroplasts. 
 
Light energy is used to split H2O molecules into its hydrogen and oxygen atom components freeing up electrons. These electrons allow provide the energy to unite the oxygen and carbon form the glucose molecule (C6H12O6), releasing the excess O2 molecules that eventually escape through the stomata. Electrons binding the components of glucose later are released in the respiration processes within the cells, providing energy for synthesis of proteins for growth in plants plus movement in animals.
 
This photosynthesis process is present in most plant species.  The release of oxygen through stomates is dependent upon open stomates and therefore is dependent of light being absorbed by the stomate guard cells and sufficient water transported from the roots to maintain those cells to swell.  Thus, at night and during droughts most plants no longer can absorb the CO2 needed for more glucose synthesis and the excess oxygen is consumed in nighttime metabolism.  This is a character of most plants with C3 photosynthesis processes.
 
Some species, including corn, have evolved a system to avoid this wasteful system.  Chloroplasts in the corn leaves make normal photosynthesis process but then break down the C3 molecules, have them transfer them to the specialized, vascular bundle cells surrounding the vascular system that are loaded with special chloroplast for C4 molecules.  These molecules are then enzymatically combined to make sugar which is moved elsewhere in the leaves and other parts of the plant.  This system occurs in species that are native to dry, hot environments such as that of corn’s central America origin.  The ultimate advantage is that corn can continue to produce carbohydrates despite environments that cause stomates to close.  Whereas most C3 plants such as soybeans, wheat and rice do not utilize light intensity greater than 3000 foot-candles, corn photosynthesis rate keeps increasing with light intensities to our maximum sun brightness of 10000 foot-candles.  Those few cells surrounding the xylem and phloem of a corn leaf vein have a special role in allowing the photosynthetic efficiency of maize.
 
This type of photosynthesis drives the rapid growth of a corn plant and ability to store excess glucose as starch in the grain.

Comments are closed.

    About Corn Journal

    The purpose of this blog is to share perspectives of the biology of corn, its seed and diseases in a mix of technical and not so technical terms with all who are interested in this major crop. With more technical references to any of the topics easily available on the web with a search of key words, the blog will rarely cite references but will attempt to be accurate. Comments are welcome but will be screened before publishing. Comments and questions directed to the author by emails are encouraged.

    Archives

    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015

    Categories

    All

    RSS Feed

© COPYRIGHT 2023. ALL RIGHTS RESERVED
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact