Corn Journal
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact
"You can see a lot by just looking"-Yogi Berra

Corn anthracnose

12/19/2017

 
​Another fungus that has taken advantage of the minimum tillage practices is Colletrichum graminicola, the cause of anthracnose.  It is most aggressive on weakened plant tissue, causing lesions on seedling leaves during cloudy rainy periods, on senescing leaves and weakened stalks.
 
The fungus remains viable on dead corn leaves and stalks if tissue is exposed on soil surface.  Conidia are produced within a gelatinous material that protects them from dehydration. Spread by splashing water onto seedlings or spread by wind later in the season, these spores germinate when in water on plant material within 12 hrs. Within 24 hours, the hypha form appresoria from which penetration pegs grow into epidermal cells. These infected plant cells respond by producing fungal-inhibiting compounds including hydrogen peroxide. Before the resistance system takes full affect, the fungus keeps the cell alive as it absorbs nutrition from these cells. It then produces hyphal branches expanding into the areas between cells as it switches from existing within living cells (biotrophy) to killing tissue and producing enzymes to digest materials in dead plant tissue (necrotrophy).  This is probably common among corn leaf pathogens that can be called hemibiotrophic pathogens. This mode differs from the rust and smut fungi that are totally biotrophs, dependent solely on living cells
 
After receiving nutrition from the dead tissue, the C. graminicola produces a large number of conidia to spread to other areas.  Most corn hybrids have limited damage from the leaf infection phase from this hybrid.  I am aware of a hybrid in the 70’s that would commonly show many leaf lesions but continued to have good yields and stalk quality.  Others have verified that the leaf disease phase does not lead to the stalk infection phase.
 
Stalk infection by this fungus is confusing.  The fungus causes a black discoloration in the outer rind cells, making it easy to see.  However, inoculation of stalks with the fungus shows that it does not actively kill the stalk pith tissue except only when the tissue is already senescing. A study published in 1980 (Phytopathology 70:534) showed that reducing photosynthesis by removing leaves increased stalk rot from the Anthracnose fungus, just as it did from others such as Gibberella and Diplodia.  It appears that this fungus is basically held off by vigorous, living corn pith tissue but can destroy senescing tissue.  This accounts also for its appearance along with early death of the flag leaf.  The flow of carbohydrates to the kernels depletes sugars from pith tissue first from the upper and lower stalk.  The senescence in the pith in the upper internode allows Colletotrichum graminicola to gain momentum, resulting in black streaks in the rind beginning at the node of that internode.  As a result of the infection and the depletion of sugars the upper flag leaf dies.  Usually this occurs before death of the lower stalk but can signal a potential for eventual stalk rot in the plant if it is not near finishing normal kernel fill.
 
There are single genes available that can inhibit the anthracnose fungus from colonizing the stalk tissue but these do not affect any of the other fungi from inhabiting the stressed corn plant. The gene does not cause any significant reduction in occurrence of stalk rot but only less of it associated with anthracnose. 

​ An interesting discussion of corn and this pathogen can be found at Plant Physiol. 2012 Mar; 158(3): 1342–1358

Comments are closed.

    About Corn Journal

    The purpose of this blog is to share perspectives of the biology of corn, its seed and diseases in a mix of technical and not so technical terms with all who are interested in this major crop. With more technical references to any of the topics easily available on the web with a search of key words, the blog will rarely cite references but will attempt to be accurate. Comments are welcome but will be screened before publishing. Comments and questions directed to the author by emails are encouraged.

    Archives

    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015

    Categories

    All

    RSS Feed

© COPYRIGHT 2023. ALL RIGHTS RESERVED
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact