Corn Journal
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact
"You can see a lot by just looking"-Yogi Berra

Corn cuticle

6/15/2017

 
​One protection from excessive water loss in corn is a waxy layer deposited on the outside of the leaf and stem epidermis cells.  This cuticle is composed of waxy polymers that are hydrophobic.  Leaves younger plants up to V4 stage tend to have more crystalline forms but older leaves form smother, more flat, smooth formats. Cuticular waxes are manufactured in the cytoplasm of the epidermal cells as a solute in solvents such as alcohols, ethers and fatty acids. The solution move through the cell walls to the surface, allowing the solvent to evaporate and deposit the wax layers.
 
At least 18 genes, referred to glossy genes have been identified affecting cuticle formation and composition of corn leaves. Various combinations of these genes influence the thickness of wax as well as the nature of the cuticle.  Most corn varieties have a crystalline form in the younger leaves although some gene mutations will extend crystalline type of wax beyond these development stages.  The change from crystalline wax to the smoother wax apparently is related to the tendency for herbicides (plus surfactants) to be absorbed more in mature leaves than in immature leaves.
 
Cuticle waxes provide several important functions to the corn plant.  Loss of water via evaporation through epidermal cells is greatly reduced.  Waxes become the initial barrier for potential pathogens both because of becoming a structure for the pathogen must overcome but also, being hydrophobic, encouraging water runoff. Only a few fungi and bacteria species can manage to overcome this protection. Cuticle waxes also offer protection against UV radiation with its potential mutagenic effects.
 
Corn plants respond to dry atmosphere by producing more wax on leaf surfaces.  Leaves of corn grown in the drier air of Nebraska develop a thicker waxy surface than the same hybrid grown in Ohio.

Comments are closed.

    About Corn Journal

    The purpose of this blog is to share perspectives of the biology of corn, its seed and diseases in a mix of technical and not so technical terms with all who are interested in this major crop. With more technical references to any of the topics easily available on the web with a search of key words, the blog will rarely cite references but will attempt to be accurate. Comments are welcome but will be screened before publishing. Comments and questions directed to the author by emails are encouraged.

    Archives

    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015

    Categories

    All

    RSS Feed

© COPYRIGHT 2023. ALL RIGHTS RESERVED
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact