Corn Journal
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact
"You can see a lot by just looking"-Yogi Berra

Lateral branch becomes female flowers

7/22/2021

 
​It is midseason for temperate zone corn plants. Terminal buds have pushed out the male flowers, the tassel, and the lateral branches have extended exposing the the female flowers of the corn plant.
 
​The ovary is formed from the diploid tissue of the mother plant.  Like other flowering plants the female sex organ is called the pistil, consisting of the ovary, a style and stigma. The style, like in other flowering plants allows the movement of the pollen sperm to be transmitted to the ovule.  In corn, this style is exceptionally long and is known as the silk.  Towards the outer end of the silk is a portion that has many hairs (trichomes) that aid in capturing pollen and encourage them to germinate.  This is known, botanically, as the stigma.   Each silk is part of a single flower of the female plant and thus leading to a single ovary with its enclosed ovule.  Cells making up the silk elongate basically due to osmotic pressure as water is transported to the cells as well as photosynthetic sugars for energy. Environmental conditions including soil moisture, leaf disease and light intensity interact with genetics to influence the movement of essential elements to the growing silk cells. The oldest ovaries at the base of the forming ear are the first to develop and elongate, but they also have the furthest to go before emerging from the surrounding leaves. First to emerge often is those a short distance from the base of the ear.
 
Corn silk emergence may occur over a 10-day period as those at the tip of the developing ear eventually emerge. Without pollination or stresses, an individual silk remains viable for about 10 days. A viable pollen grain germinates within minutes of adherence to the silk. Growth of the pollen germ tube into the silk initiates the halt to that silk’s elongation. As the pollen tube progresses down the silk channel towards the ovule, silk cells dehydrate and collapse, effectively inhibiting infection by fungi.  Timing of the pollination and silk emergence is essential to successful fertilization of the ovule cells.  Water pressure being more essential to silk emergence than the production of pollen, makes corn seed production very dependent on field conditions. Genetics vary for vulnerability to stress related silk extension.  Inbreds and hybrids vary in root growth patterns for absorption of water from soil as well as the tendency to move water to the developing silks.  Duration of silk emergence without pollination also influences the vulnerability to ear mold fungi. Aspergillus infection, often causing aflatoxin, is related to drought delaying silk emergence and thus poor pollination.  Diplodia ear rot is often related to long silk emergence periods without pollination when rain inhibits movement of viable pollen to the silk, adding to the vulnerability of the silk to infection by this fungus.  Insect feeding of fresh silk also is linked to fungus infection.
 
Environment and genetics greatly influence the biology of flowering in corn.
 

Comments are closed.

    About Corn Journal

    The purpose of this blog is to share perspectives of the biology of corn, its seed and diseases in a mix of technical and not so technical terms with all who are interested in this major crop. With more technical references to any of the topics easily available on the web with a search of key words, the blog will rarely cite references but will attempt to be accurate. Comments are welcome but will be screened before publishing. Comments and questions directed to the author by emails are encouraged.

    Archives

    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015

    Categories

    All

    RSS Feed

© COPYRIGHT 2023. ALL RIGHTS RESERVED
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact