Corn Journal
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact
"You can see a lot by just looking"-Yogi Berra

Seed dormancy to activity

3/31/2020

 
Corn seed dried properly to less than 15% moisture allows the mitochondria in the embryo cells to remain intact. Respiration in these mitochondria continues at a very slow rate, releasing sufficient energy to maintain membrane integrity of cell organelles.  Genetics, especially of the female parent that supplied the mitochondria from its egg, affected this success as well as the physical conditions during seed development and harvest. Success gets revealed when the seed is planted. That process was described in Corn Journal blog 4/25/2017.
 
Very soon after the corn seed is planted, imbibition begins. The H2O activates the membrane-bound mitochondria to respire, providing energy for protein production. The enzymatic proteins include those that digest the starch stored in the endosperm into more sugar molecules to be transported through the scutellum to other cells in the embryo, resulting in more energy available to produce structures for cell elongation.  Heat energy provides a regulatory function affecting the speed of this germination process.  Imbibition occurs at any temperature but metabolic activity in corn is generally thought to be very low if seed environment is below 50°F.  Speed of germination increases as the temperature increases.
 
Membrane integrity within the seed also affects the net speed of this process.  Those individual seed with more damage are slower to sufficiently activate the system and thus slower to activate the metabolism needed for cell elongation in root (radicle) and the shoot sections of the embryo.  Cool environments, delaying membrane repair, may result in death of the imbibed seed before the shoot can emerge from the soil.  Some of these seed, even after warmed manage only to extend the root through the outer wall for the kernel, the shoot never emerging.  Other weakened seed may finally get enough momentum to push through the soil surface but days after the healthier seed have emerged, resulting in a season-long competitive disadvantage.  Heat energy during germination affects the severity of the effect of membrane damaged seed.
 
Microbes in the soil are generally warded off by products of seed metabolism in healthy seed. Those individual seeds that are slow to generate sufficient energy for growth are also more easily attacked by microbes, further slowing the germination process.  Seed treatments are useful in giving the damaged seed more time to successfully germinate. Healthy seeds can successfully produce normal seedlings despite surrounding common soil microbes but those weaker individuals need the extra protection.

Comments are closed.

    About Corn Journal

    The purpose of this blog is to share perspectives of the biology of corn, its seed and diseases in a mix of technical and not so technical terms with all who are interested in this major crop. With more technical references to any of the topics easily available on the web with a search of key words, the blog will rarely cite references but will attempt to be accurate. Comments are welcome but will be screened before publishing. Comments and questions directed to the author by emails are encouraged.

    Archives

    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015

    Categories

    All

    RSS Feed

© COPYRIGHT 2023. ALL RIGHTS RESERVED
  • Corn Journal
  • Author
  • Stalk Rot Booklet
  • Seed Testing
  • Corn Genetics
  • Pathology
  • Sponsors
  • Contact